Python multiplicative inverse in GF(2) finite field -
these 2 functions perform extended euclidean algorithm, , find multiplicative inverse. order seems right, it's not coming i'm expecting per tool u of sydney http://magma.maths.usyd.edu.au/calc/ , since done in gf(2) finite field, think i'm missing key step translates base 10 field.
this tested , worked on base 10, taking in polynomials binary coefficients might not possible here. question parts of python incorrectly applying algorithm, such // floor, may not carry function capable of in base 10 able in gf(2).
the tool above can tested this:
r<x>:=polynomialring(gf(2)); p:=x^13+x+1; q:=x^12+x; g,r,s:=xgcd(p,q); g eq r*p+s*q; g,r,s;
the functions:
def extendedeuclideangf2(self,a,b): # extended euclidean. a,b values 10110011... in integer form inita,initb=a,b; x,prevx=0,1; y,prevy = 1,0 while b != 0: q = int("{0:b}".format(a//b),2) a,b = b,int("{0:b}".format(a%b),2); x,prevx = (int("{0:b}".format(prevx-q*x)), int("{0:b}".format(x,2))); y,prevy=(prevy-q*y, y) print("euclidean %d * %d + %d * %d = %d" % (inita,prevx,initb,prevy,a)) return a,prevx,prevy # returns gcd of (a,b), , factors s , t def modular_inverse(self,a,mod): # a,mod integer values of 101010111... form a,mod = prepbinary(a,mod) bitsa = int("{0:b}".format(a),2); bitsb = int("{0:b}".format(mod),2) #return bitsa,bitsb,type(bitsa),type(bitsb),a,mod,type(a),type(mod) gcd,s,t = extendedeuclideangf2(a,mod); s = int("{0:b}".format(s)) initmi = s%mod; mi = int("{0:b}".format(initmi)) print ("m inverse %d * %d mod %d = 1"%(a,initmi,mod)) if gcd !=1: return mi,false return mi # returns modular inverse of a,mod
i've been testing polynomials in binary form of course:
p = "x**13 + x**1 + x**0" q = "x**12 + x**1"
the function worked when tested base-10 because of conversions int("{0:b}".format(x))
have no effect on x:
37 == int("{0:b}".format(37), 2) # >>> true
number objects in python base-10. converting numbers binary strings, integers has no effect. here alternative version of function should work on a
, b
base-10 ints , return them in binary. can remove bin()
function return numbers in base-10, or use lambda x: int("%d".format(x))
convert a
, b
binary decimal in first line of function.
def extendedeuclideangf2(a, b): # extended euclidean. a,b values 10110011... in integer form inita, initb = a, b # if , b given base-10 ints x, prevx = 0, 1 y, prevy = 1, 0 while b != 0: q = a//b a, b = b, a%b x, prevx = prevx - q*x, x y, prevy = prevy - q*y, y print("euclidean %d * %d + %d * %d = %d" % (inita, prevx, initb, prevy, a)) i2b = lambda n: int("{0:b}".format(n)) # convert decimal number binary value in decimal number return i2b(a), i2b(prevx), i2b(prevy) # returns gcd of (a,b), , factors s , t
all said, don't use lambdas in function - i'd suggest writing program avoid using binary altogether, can converting from/to binary @ interface of program source data.
Comments
Post a Comment